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Abstract 

The section method was used to determine the atomic 
surfaces of one-dimensional quasilattices generated 
by means of deflation rules with the scale factor 
/z=~ "-n, where ~-=(1+51/2)/2 and l < n < 3 .  The 
quasilattices satisfy the condition that the distances 
between neighboring points take on just the two 
values of the original Fibonacci quasilattice. Evidence 
suggests that the atomic surfaces are regular fractals, 
whose width depends on both length and frequency 
of periodic inclusions. The frequencies of interpoint 
distances as well as squared Fourier transforms and 
simulated diffraction patterns of the quasilattices have 
been calculated and will be discussed. Generalization 
of the fractal development of atomic surfaces yields 
homometric quasicrystals. 

1. Introduction 
Since the discovery of tiles that force nonperiodic 
tilings (Penrose, 1974, 1979) and of quasicrystals 
(Shechtman, Blech, Gratias & Cahn, 1984), much 
experimental and theoretical work has been focused 
on the discovery of new types of quasicrystals [for a 
review the reader is referred to Steurer (1990)] and 
on several methods for the generation of quasilattices: 

(i) deflation procedures (Penrose, 1974, 1979; de 
Bruijn, 1981; Socolar, 1989); 

(ii) grid methods (de Bruijn, 1981; GShler & 
Rhyner, 1986; Socolar & Steinhardt, 1986; Korepin, 
G/ihler & Rhyner, 1988); 
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(iii) the projection and section method (de Bruijn, 
1981; Kramer & Neri, 1984; Duneau & Katz, 1985; 
Kalugin, Kitaev & Levitov, 1985; Elser, 1986; Bak, 
1986; Janssen, 1986). 

One direction of theoretical research is to increase 
understanding of the higher-dimensional space-group 
symmetries (Janner, 1991; Janssen, 1991, 1992). 
Another direction is to investigate the possibilities of 
decorating the quasilattices in physical space 
(Henley, 1986; Kumar, Sahoo & Athithan, 1986) con- 
structed by means of either the projection or the 
section method. However, surprisingly little attention 
has been paid to modified window functions (the 
projection method) or atomic surfaces (the section 
method) (Zia & Dallas, 1985; Bak, 1986; DiVincenzo, 
1986; Elser, 1986). The purpose of this paper is to 
investigate which kinds of windows (atomic surfaces) 
correspond to quasilattices obtained by means of 
'simple' deflation rules* and what the corresponding 
effects are on the squared Fourier transforms and 
diffraction patterns of these quasilattices. 

2. Deflation rules 

The one-dimensional quasilattices described in this 
paper have been generated by means of deflation 
rules with the scale factor/x = ~--" [ r  = (1 +51/2)/2] 
with 1---n-<3. They satisfy the condition that the 
lengths of line segments joining adjacent points take 

* 'Simple' deflation rule means that every line segment of a given 
length is decomposed in the same way. 
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668 ONE-DIMENSIONAL QUASILATTICES 

Table 1. Deflation of line segments of lengths A and 
B with the scale factor t z = z - "  [r=(1+51/2)/2, 

l_<n_<3] 

Each line segment of  length A is replaced by Fn÷ t and F.  line 
segments of  lengths A' and B', respectively, and each line segment 
of  length B is replaced by F.  and F._~ line segments of  lengths 
A' and B', respectively, where F.  = [ r " - ( - 1 / r ) " ] / 5 1 / 2  are the 
Fibonacci numbers and A ' = / z A  and B '=/zB.  

Number  of  
n A B combinations 

1 A'B' A' 2 
B'A' 

2 A'A'B'  A'B' 6 
A'B'A'  B'A' 
B'A'A'  

3 A 'A'A'B'B'  A'A'B'  30 
A'A'B'A'B'  A'B'A'  
A 'A'B'B'A'  B'A'A' 
A 'B'A'A'B'  
A'B'A'B'A'  
A 'B'B'A'A'  
B'A'A'A'B'  
B'A'A'B'A'  
B'A'B'A'A'  
B'B'A'A'A'  

on only the two values of the original Fibonacci tiling. 
All neighboring points are separated by either A or 
B, with A / B  = r. Over a long range the ratio of the 
number of line segments of length A to the number 
of line segments of length B approaches r : l .  Defla- 
tion of a one-dimensional quasiperiodic structure is 
a self-similar transformation that decomposes each 
line segment into smaller line segments, scaled down 
by a factor/z, which form a new quasiperiodic struc- 
ture. In the cases considered here,/z = r -n means that 
each line segment of length A is replaced by F,+1 
line segments of length A' and F, line segments of 
length B' and each line segment of length B is 
replaced by F, line segments of length A' and F,-1 
line segments of length B', where F , = [ T " -  
( -  1/r)"]/5 ~/2 are the Fibonacci numbers and A' =/zA 
and B' =/xB. Thus, the scale factor/z determines only 
the number of line segments of lengths A' and B' and 
not their sequence within A and B. For/x = r -1, each 
A may be replaced by either the pair A'B' or the pair 
B'A' and each B is replaced by A'. Both possible 
combinations of deflated line segments, (1) A-~ A'B'  
and B +  A' and (2) A +  B'A' and B-> A', yield the 
original Fibonacci tiling. For/x - r -2 there are three 
different ways to deflate A, namely A'A'B' ,  A 'B'A'  
and B'A'A',  and two different ways to deflate B, 
namely A'B'  and B'A'. For /z = r -3, there are ten 
different ways to deflate A and three different ways 
to deflate B. Table I gives the different deflation types 
of the line segments of lengths A and B for/z = r-" 
with 1 - < n - 3 .  The 38 ( / x = r - l : 2 ;  / z = ' r - 2 : 6 ;  / z =  
r-a: 30) combinations of the different deflation types 
result in nine different types of quasilattices (Table 
2). The concept of local-isomorphism (LI) classes 

Table 2. The nine different types of  quasilattice 

The first column gives the serial number of the types. Type 0 
corresponds to the original Fibonacci tiling. The second column 
contains the different combinations of deflated line segments of 
lengths A and B, which yield quasilattices of the same type. The last 
column gives the width w of the atomic surface, a = arctan (l /r)  and 

a =  lad = la2[. 

Combinations of  deflated line segments 
Type of lengths A and B w 

0 A 'B '+A' ,  B 'A'+A' ,  A 'A 'B '+A'B ' ,  arcos 
A'B 'A '+A'B ' ,  A 'B 'A '+B'A ' ,  B 'A 'A '+B'A' ,  ----1.3764a 
A'A 'B 'A 'B '+ A'A'B',  A 'B 'A 'A 'B '+ A'A'B',  
A 'B'A'A'B'  + A'B'A',  A 'B 'A 'B 'A '  + A'B'A',  
B 'A 'A'B'A'+ A'B'A',  B 'A 'A 'B 'A '+ B'A'A', 
B 'A 'B'A'A'+ B'A'A' 

1 A 'A 'B 'A 'B '+A'B 'A ' ,  A 'B 'A 'B 'A '+A'A 'B ' ,  
A 'B 'A 'B 'A '  + B'A'A' ,  B 'A 'B 'A 'A '  + A'B'A'  

2 B 'A 'A 'A 'B '+ A'B'A'  

3 A 'B 'A 'A 'B '+B 'A 'A ' ,  B ' A ' A ' B ' A ' + A ' A ' B '  

4 A 'A 'A 'B 'B '+A'A 'B ' ,  A 'A 'B 'B 'A '+A'A 'B ' ,  
A 'A 'B'B'A'  + A'B'A',  A 'B 'B'A'A'  + A'B'A',  
A 'B'B'A'A'  + B'A'A', B 'A 'A'A'B'  + A'A'B',  
B'A'A'A'B'  + B'A'A', B 'B'A'A'A'  + B'A'A' 

5 A 'A 'B '+B'A ' ,  B 'A 'A '+A 'B '  

6 A 'A 'B 'A 'B '+B'A 'A ' ,  B 'A 'B 'A 'A '+A'A 'B '  

7 A 'A 'A 'B 'B '+ A'B'A', A 'A 'B 'B 'A '+ B'A'A', 
A 'B 'B 'A 'A '+ A'A'B',  B 'B 'A 'A 'A '+ A'B'A' 

8 A 'A 'A 'B 'B '+B'A 'A ' ,  B 'B 'A 'A 'A '+A'A 'B '  

ar ~ (cos or)/2 
= 1.8017a 
a51/2 COS 

= 1.9021 a 
3at(cos a)/2 

=2.0646a 
3at(cos a)/2 

=2.0646a 

a T  2 COS O~ 

=2.2270a 
a(3r+ 1)(cos a)/2 

=2.4899a 
a(3r+ l)(¢os ~)/2 

---2.4899a 
a(4r+ 1)(cos t~)/2 

=3.1781a 

(Levine & Steinhardt, 1986; Socolar & Steinhardt, 
1986) was used to subdivide the quasilattices gener- 
ated by means of the 38 combinations of deflation 
types into different equivalence classes. The sub- 
division of the quasilattices into nine different types 
(LI classes) was achieved with use of the correspond- 
ing atomic surfaces. Their determination will be dis- 
cussed in the next section. 

The frequencies of interpoint distances calculated 
by substitution matrices (Mandelbrot, Gefen, 
Aharony & Peyri~re, 1985; Olami & KMman, 1989) 
of the nine different types of quasilattices are listed 
in Table 3, up to a maximum distance of r = 5B. One 
interesting feature of these new quasilattices is that 
there exist several types of quasilattices, which have 
the same frequencies of pairs, triplets, quadrup- 
lets , . . ,  of adjacent line segments (Table 3) and differ 
only if one takes larger clusters of adjacent line seg- 
ments into account. Comparable properties have been 
found in quasiperiodic pentagonal plane tilings 
(Zobetz, 1992). 

3. Embedding methods 

Although deflation procedures allow a fast and direct 
generation of a certain type of quasiperiodic structure 
and may be helpful to describe several properties by 
means of substitution matrices, by far the best way 
to derive the diffraction pattern of a quasicrystal is 
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Table 3. Frequencies o f  interpoint distances that occur in the nine different types of  quasilattices, up to a maximum 
distance of  r = 5 B 

T h e  l o w e r  rows  g ive  t he  c o r r e s p o n d i n g  c lus te r s  o f  a d j a c e n t  l ine  s e g m e n t s .  

r / B  
1 r =  2 1 + r =  3 2 r =  2 +  r =  1 + 2 r =  3 + r - -  3 r =  

T y p e  1.0000 1.6180 2.0000 2.6180 3.0000 3.2360 3.6180 4.2360 4.6180 4.8541 

0 0.7639 1.2361 - 1.5279 - 0.4721 0.2918 1.7082 - - 
1 0.7639 1.2361 - 1.5279 - 0.4721 0.4721 1.3475 - 0.1803 
2 0.7639 1.2361 0.1459 1.2361 - 0.6180 0.5836 1.1246 - 0.2918 
3 0.7639 1.2361 0.1459 1.2361 0.6180 0.4377 1.4164 - 0.1459 
4 0.7639 1.2361 0.2918 0.9443 - 0.7639 0.5836 1.1246 - 0.2918 
5 0.7639 1.2361 0.2111 1.1056 0.6833 0.5029 1.2859 0.0807 0.2111 
6 0.7639 1.2361 0.1459 1.2361 0.6180 0.5836 1.1246 0.1459 0.2918 
7 0.7639 1.2361 0.2918 0.9443 0.7639 0.6950 0.9017 0.1115 0.4033 
8 0.7639 1.2361 0.3820 0.7639 0.0902 0.8541 0.5836 0.8541 0.1803 0.4721 

B A BB A B  BBB A A  A B B  A A B  A B B B  A A A  
BA BAB A B A  BABB 

BBA BAA BBAB 
BBBA 

through the knowledge of either the window or the 
atomic surface. Appropriate embedding of a quasilat- 
tice into higher-dimensional space also has the advan- 
tage that the whole apparatus of crystallography is 
applicable in higher-dimensional space (Janner, 
1991; Janssen, 1991, 1992). 

Projection method. A one-dimensional quasilattice 
may be obtained by multiplication of a periodic two- 
dimensional lattice by a window function that has 
the value unity within the window and the value zero 
outside. The lattice points that lie within the window 
are projected onto physical space. The projected lat- 
tice points give a quasilattice if the slope of physical 
space is irrational with respect to the two-dimensional 
lattice, otherwise (rational slope) the projected lattice 
points yield a periodic lattice, where the period 
depends on the slope of physical space. The Fourier 
transform of the set of projected lattice points is a 
cut through the convolution of the Fourier transform 
of the two-dimensional lattice (which is just the set 
of reciprocal-lattice points of the two-dimensional 
lattice) and the Fourier transform of the window. 

Section method. The condition that all lattice points 
of the two-dimensional lattice that lie within the win- 
dow will be projected onto physical space may be 
reformulated as follows. The two-dimensional struc- 
ture consists of line elements (atomic surfaces) per- 
pendicular to physical space, attached to the nodes 
of the two-dimensional lattice. The intersections 
between the atomic surfaces and physical space define 
the positions of the quasilattice points. Since the 
two-dimensional structure may be considered as the 
convolution of the atomic surface with the two- 
dimensional lattice, its Fourier transform is the prod- 
uct of the transforms of the atomic surface and the 
lattice. Subsequent projection (the Fourier transform 
of a section corresponds to a projection and vice 
versa) onto physical space yields the Fourier trans- 
form of the quasilattice. 

If an atomic surface and the cross section of a 
window perpendicular  to physical space have the 
same shape, the two methods yield quasilattices of 
the same type. Therefore, we confine ourselves in the 
following to the section method. 

Let L = {tit = n l a l  + n2a2,  ni E Z }  be a square lattice 
with the basis vectors a~ and a2 ( a = l a l l = [ a 2 [ ) i n  
two-dimensional space V. An orthogonal coordinate 
system with the axes denoted Xll (physical space) and 
X± (perpendicular space) is introduced that is an 
angle a =arc tan  ( l / r )  counterclockwise from a~. The 
components all and a± of the basis vectors are obtained 
by use of the relations all = Plla and a l  = P±a, where 
in the case of a square lattice the projection operators 
Pll and PI  (Elser, 1986) are given by 

( cos 2 o~ cos a sin o~) 
PII = \ cos  a sin a sin 2 a 

and 

(3.1) 

s i n  2 a 

P± = I - PII = \ _ c o s  a sin a 
- cos  a sin a'~ 

COS 20~ ) 

(3.2) 

where I denotes the unit matrix. The position of a 
quasilattice point that is the intersection of  an atomic 
surface ~9± attached to the endpoint of a lattice vector 
t =  nlal+n2a2 of the two-dimensional lattice with 
physical space XII is given by ill = nlall 1 + n2all 2. For 
the position vector of a lattice point projected onto 
perpendicular  space X±, we find t± = n~a±~+n2a±2. 
The one-dimensional quasilattice is the set LII = 
{tll {91 * t n X l l #  O}, where the symbol * represents 
the operation of convolution. The reciprocal two- 
dimensional square lattice is the set L * =  
{hlh = hlal* + h2a*, hi ~ Z}, where a* and a* are the 
reciprocal basis vectors and satisfy a i - a *  = 60. The 
components of h in physical and perpendicular 
reciprocal space are given by hll = hlall*+h2al~ 2 and 
h± = hla* ~ + h2a*2, with all / • all*+ aa. i"  a*xj = ~ij" 
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To describe the shape of an atomic surface we 
introduce the function 

1 i fx±~ O± 
S(x±)= 0 otherwise. (3.3) 

In terms of the section method, the quasilattice LII is 
the intersection of Xll with the convolution of the 
lattice L with S(x±). Thus, the structure amplitude 
F(hll ) of a reciprocal quasilattice point hll is given by 

F(hll ) = S*(h ±)F(h), (3.4) 

where S*(h±) denotes the Fourier transform of S(x±) 
and F(h) is the structure amplitude of the two- 
dimensional reciprocal-lattice point h. 

The atomic surfaces corresponding to the 38 pos- 
sible combinations of deflated line segments were 
determined in the following way. For each type of 
quasilattice, about 500 000 points were generated in 
physical space Xll by means of the corresponding 
deflation rules. Subsequently, these quasilattice 
points were embedded in the two-dimensional space 
V and projected onto perpendicular space X± accord- 
ing to the relations described above. The maximum 
and minimum values of t± determine the width w = 
Itj_max--t±mi,I of an atomic surface. In the case of the 
original Fibonacci quasilattice, the atomic surface 
has no discontinuities and its width is given by Wo = 
a c o s a  + a s i n a  (Elser, 1986). Widths greater than Wo 
indicate disconnected atomic surfaces. The distribu- 
tion function of projected lattice points of each 
atomic surface was divided into n=2000  strips of 
equal width A , =  w/n. The normalized height of a 
strip is given by vj=[t±]j/[t±]max, where [ t . ] j  is the 
number of projected lattice points that fall into the 
j th  strip and [t±]max is the maximum of the n [t±]j. 
Deviations of vj from 0 or 1 indicate that the j th strip 
consists of at least one region where S(x ± )=  1 and at 
least one region where S (x±)=  0/f 

Several deflation rules yield identical atomic sur- 
faces. The nine different types of atomic surface are 
shown in Fig. 1. Since there is a one-to-one correspon- 
dence between the set L± = {t±} and the set LII--{tll}, 
the subdivision into nine different types of atomic 
surfaces applies equally to the quasilattices (Table 2). 

The atomic surfaces show the following properties: 
(1) The width w of an atomic surface (Table 2) 

obviously depends on both the length and the 

¢ Atomic surfaces divided into smaller strips (n > 2000) could 
be obtained but would not alter the results substantially, although 
there would be less vj differing significantly from 0 or 1. n = 2000 
was considered to be large enough, since the largest differences 
between the squared Fourier transforms (see § 4) of  an atomic 
surface divided into n = 2000 strips obtained by +500 000 quasilat- 
tice points and an atomic surface divided into n = 4000 strips 
obtained by - 1  000 000 quasilattice points in the range Ih.I--0 to 
30 (a = 1.0/~) were less than 0.003%; the mean deviations were 
less than 0.0003%. 

frequency of periodic inclusions (e.g. AA,  AAA ,  
A A A A ,  ... or BB, BBB, ...). 

(2) The small and large details of the atomic sur- 
faces seem to be geometrically identical except for 
scale. This can best be seen for the atomic surface of 
type 2. Fig. 2 shows a magnification sequence of this 
atomic surface. Each successive figure represents a 
magnification of a selected portion of the previous 
figure up to a final magnification of more than 23. 
Each magnified portion is similar to the whole and 
to each other magnified portion. Objects for which 
each piece of the shape is geometrically similar to 
the whole are called self-similar, meaning that they 
remain 'similar' to themselves after a change of scale. 
This is not surprising, since the quasilattices have 
been generated by means of deflation rules, which 
are directly related to self-similarity. This property is 
trivially present in the original Fibonacci quasilattice 
(type 0), where the atomic surface is a line element 
without any discontinuities. 

Thus, evidence suggests that the atomic surfaces 
are regular fractal objects. This suggestion has been 

v l  i 

oHlmm !HHHU 

1 8 

0 I 2 [WJWo] 

Fig. 1. Distribution functions (atomic surfaces) of the lattice points 
projected onto perpendicular space X± [S(xi) versus xi] of the 
nine different types of quasilattice. Wo denotes the width of the 
atomic surface of the original Fibonacci quasilattice (type 0). 
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confirmed by several properties of the quasilattices 
(e.g. frequencies of interpoint distances and squared 
Fourier transforms) that correspond to different 
stages of fractal development (see § 5) of the different 
types of atomic surface. 

4. Fourier transforms and diffraction patterns 
To derive the Fourier transform S*(h.)  of an atomic 
surface S(x±), each atomic surface was divided into 
n = 2000 strips of width Aw = w/n. The Fourier trans- 
form of the j th  (j  = 1 to n) strip is given by 

uj 

S * ( h . ) j = u j f e x p ( 2 7 r i h l . x ± ) d x . ,  (4.1) 
6 

where lj and uj denote the lower and upper bounds 
and vj denotes the normalized height of the j th  strip. 
The Fourier transforms of the n strips are added to 
give the total Fourier transform of the atomic surface, 

s*o,.), 
j = l  

" 
- v j f e x p ( 2 7 r i h . ' x . ) d x ± .  (4.2) 

j = l  /j 

Integration and simple manipulations yield 

S*(h±) = ( a  + iB)(sin 6)/(7rh±), (4.3) 

where 

A= f vjcos(aj-6) ,  B= f v j s i n ( a j - 6 ) ,  
j = l  j = l  

otj = 2 7rh± (jAw q- ll) 

1.__. 

1 

t_._ 

I, Ilifill 
Fig. 2. Magnification sequence of  the distribution function (atomic 

surface) of  lattice points projected onto X L of the quasilattice 
of  type 2. Each successive figure represents a magnification of  
a selected portion of  the previous figure up to a final mag- 
nification of  more than 23. 

and 

8 = "rrh±Aw. 

Fig. 3 shows the squared Fourier transforms, 
[S*(hz)12=(A2+B2)[(sin 8)/(7rhl)] 2, of the nine 
different atomic surfaces. The squared Fourier trans- 
forms show three characteristic features: 

(i) The points at which the functions fall to zero 
are the same for all nine functions and correspond 
to integer multiplies of 1/Wo (Wo = a cos a + a sin c~). 

(ii) The half-widths of the maxima at Ih.[=0 
decrease with increasing w. 

(iii) It will be noticed that, in the squared Fourier 
transform of the atomic surface of type 0 (original 
Fibonacci quasilattice), the peak heights decrease 
monotonically with increasing Ihll. For example, 
there will be no intensities >1% of the central 
maximum with In. l> 2.68 or >0.5% with Ih~l> 4.50 

f s+(h')]2 _ 

I _ 

 AA AA 
I 

/ ' X A  

/ . .~f  

2 

7 

A A  
8 

1.,,,_ _ /x_~  AA ha. 

' [W~ 6 s 1'o 1'5 '] 
Fig. 3. The squared Fourier transforms of  the nine different atomic 

surfaces. The curves are truncated at the 7% level of  the central 
maximum at h ± = 0. 
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(a = 1.0). Since the distance between two reciprocal- 
lattice points in perpendicular space increases with 
decreasing distance in physical space and since we 
have only detection systems with a discrete minimum 
of detectable intensity, the diffraction pattern of the 
original Fibonacci quasilattice will consist of isolated 
Bragg peaks. In the Fourier transforms of the other 
quasilattices, the peak heights do not converge 
monotonically and as quickly to zero as in the squared 
Fourier transform of the original Fibonacci quasilat- 
tice. This may lead to diffraction patterns where reflec- 
tions cannot be resolved and leave some uncertainties 
when the diffraction pattern is indexed, despite the 
fact that there always exists an uncertainty of a factor 
of r". 

Fig. 4 shows simulated diffraction patterns derived 
from the nine different atomic surfaces shown in Fig. 
1. A single scattering point with unit weight has been 

placed at each point of the two-dimensional lattice. 
The peaks have Lorentzian shape, the width at half- 
maximum is 0.3°20, A=1.5418/~ and a = 1 0 / ~ .  
Several features of the patterns are of note: 

(i) The positions of the peaks are the same for all 
nine diffraction patterns but their intensities decrease 
and hence their detectable number reduces, which is 
in accordance with the fact that the widths of the 
central maxima of the squared Fourier transforms 
decrease with increasing width of the atomic surfaces. 

(ii) For type 3 and type 4, we see that a certain 
number of peaks are broadened. 

(iii) For type 7, we see that there is a certain 
amount of 'diffuse' scattering. 

Observations (ii) and (iii) are caused by overlap- 
ping peaks because, in the simulated diffraction pat- 
terns of these quasilattices, reflections with relatively 
large components hi  also yield detectable intensities. 

7 _~_ 

I ! 

0 20 

J 

J 

J 

J 

 L _UL 

J ~  

40 
2 O  

do 
Fig. 4. Simulated diffraction patterns of  the nine different types 

of  quasilattices. The peaks have Lorentzian shape, the width at 
half-maximum is 0.3°20, h = 1.5418 A and a = 10 A. The peaks 
are truncated at the 20% level of  I(0, 0). 

5. Fractal development of atomic surfaces 

In the discussion in § 3 it was seen that the atomic 
surfaces obviously have self-similar properties; this 
indicated them to be fractally shaped objects 
(Mandelbrot, 1983). In the following, this observation 
will be explained by intuitive rather than rigorous 
arguments. 

Construction methods for five of the eight fractally 
shaped atomic surfaces have been found, mainly by 
guesswork. The general procedure is as follows. One 
starts with the half-open interval [r, s) as initiator. 
The two kinds of generator and the lengths of the 
intervals dl(nf) and d2(nf) depend on nf, the stage 
of fractal development: 

nf=2n+ l: 

[r-dl(nf),r),  [r+d2(n:),s-dl(ny)), 

[ s, s + d2( n:) ); (5.1) 

nf = 2n: 

[r-d2(n:),r), [r+dl(n:),s-d2(n:)), 

[s,s+dl(nf)). (5.2) 

The initiator for each type of quasilattice is the 
half-open interval [0, Wo). The atomic surface corre- 
sponding to the first fractal stage consists of three 
half-open intervals: [-d~(1),0),  [d2(1), wo-dl(1))  
and [Wo, wo+d2(1)). The first construction step is 
followed by application of the generator for nf= 2, 
which yields nine half-open intervals: 

[-d~(1) - d2(2), -d , (1  )), 

[-d~(1)+d~(2),-d2(2)), [0, d~(2)), 

[ d2( 1 ) - d2(2), d2( 1 )), 

[d2(1) + d~(2), wo-d~(1)-d2(2)), 
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[wo-d~(1), wo-dl(1)+dl(2)), [w0-d2(2), w0), 

[Wo+ d,(2), wo+d2(1)-d2(2)), 

[Wo+ d2(1), wo+d2(1)+d~(2)) 

and so on ad infinitum. The values of d~(ny) and 
d2(nl) for the different types of atomic surface are 
listed in Table 4 and their effect on the initiator is 
shown in Fig. 5(a). The fractal development of the 
atomic surface of type 2 up to n I = 3 is shown in Fig. 
5(b). 

The frequencies of interpoint distances (up to a 
maximum distance of r = 5 B )  of the quasilattices 
corresponding to the first three stages of fractal 
development of the atomic surface of type 2 are 
summarized in Table 5. They were calculated using 
the method introduced by Elser (1986). The values 
demonstrate convergence to the values derived by 
means of substitution matrices. This convergence has 
also been observed for the other types of quasilattices. 
The corresponding simulated diffraction patterns are 

Table 4. Generators for five of the nine different types 
of atomic surfaces 

n: denotes the stage of fractal development, a = arctan ( l / z )  and 
a = lall = la21 . 

Type dl(nf) d2(nf) 
1 a(cos a)lr3"/ a(cos a)lr3"/+l 
2 a(cos a)/r3"/ a(cos ct)/z3"/ 
3 2a(cos a)/r3n/ a(cos a)/#"/+1 
4 a(cos a)/'r3"/-1 a(cos a)/~r3n/ 
5 a(cos a)l~'Z", < a(cos a ) / ~ : ' : '  

shown in Fig. 6. They confirm the assumption that 
the atomic surfaces obtained by means of the deflation 
rules are the limits of decreasing approximations as 
the fractal atomic surfaces grow. The mean deviation 
between the squared Fourier transforms of the atomic 
surfaces after five steps of fractal development and 
the squared Fourier transforms of the atomic surfaces 
derived by means of the deflation procedure in the 
range [hl[ =0 to 30 (a = 1.0/~) is for all types less 

t y p e  d1(11 d211] 
t I 

1 ] 
d1(11 d2 (1 )  
I 1 

dl~) d2tl) 
I I 

3 I ~  
i 
I 

d1(1} d2 (1 )  
I I 

" r 
d1111 d2tl) 

5 

In i t ia tor  

G e n e r a t o r s  

I I 

I 

i 

In i t ia tor  

0 w o 

G e n e r a t o r  t y p e  2 

-di l l} wo+d2(1 ) 

(a) 

r"  
I 

I I 

I I 

II 

jjj 

11111 IHII HII! x, 
(b) 

Fig. 5. Fractal generators and fractal development of the atomic surface functions S(x L). (a) Initiator and generators of types 1-5. The 
atomic surfaces are shown after application of the first construction step. (b) Initiator, generator and the first three stages of fractal 
development of the atomic surface of type 2. nf denotes the stage of fractal development. The fractal development is stopped at the 
limit of our eyes' resolution: the fourth stage would be indistinguishable from the last one (stage 3) depicted. 
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Tab le  5. Frequencies o f  interpoint distances in the quasilattices corresponding to the fractal development o f  the 
atomic surface o f  type 2, up to a maximum distance of  r = 5 B 

nf denotes the stage of fractal development, nf = 0 corresponds to the original Fibonacci quasilattice (type 0) and n I=  oo to the 
quasilattice of type 2 obtained by means of the corresponding deflation rule. The last rows give the corresponding clusters of adjacent 
line segments. 

r/B 
1 ~--~ 2 l + r =  3 2r= 2 + r =  l+2r--~ 3 + r =  3r= 

nf 1.0000 1.6180 2 . 0 0 0 0  2 . 6 1 8 0  3 . 0 0 0 0  3 . 2 3 6 0  3 . 6 1 8 0  4 . 2 3 6 0  4 . 6 1 8 0  4.8541 
0 0.7639 1.2361 - 1.5279 - 0.4721 0.2918 1.7082 - - 
1 0.7639 1.2361 0.1115 1.3050 - 0.5836 0.5836 1.1246 - 0.2918 
2 0.7639 1.2361 0.1378 1.2523 - 0.6099 0.5836 1.1246 - 0.2918 
3 0.7639 1.2361 0.1440 1.2399 - 0.6161 0.5836 1.1246 - 0.2918 

co 0.7639 1.2361 0.1459 1.2361 - 0.6180 0.5836 1.1246 0.2918 
B A BB AB BBB AA ABB AAB ABBB AAA 

BA BAB ABA BABB 
BBA BAA BBAB 

BBBA 

t h a n  0.0003%; the  m a x i m u m  difference is for  all types  
less t h a n  0 .002%.*  

6. H o m o m e t r i e  quas icrys ta l s  

A st r ik ing fea tu re  o f  the  cons t ruc t i on  m e t h o d  for  
f rac ta l ly  s h a p e d  a tomic  sur faces  is tha t  gene ra l i za t i on  
of  this  m e t h o d  y ie lds  inf in i te ly  m a n y  different  a tomic  

* The largest differences between the squared Fourier transforms 
of the atomic surfaces of the fourth and fifth fractal stage derived 
by regular fractal development for each type of quasilattice were 
less than 0.0025%. The mean deviations were less than 0.0003%. 
The minimum length of an interval of the atomic surfaces corre- 
sponding to the 4th fractal stage is a(cos a)/r 13 [type 1 and type 
3: d2(ns)=a(cos a)/C"/+~], which corresponds approximately to 
w/1250. 

4O 

2O 

60 i °] 
t | 

0 20 

Fig. 6. Simulated diffraction patterns of the quasilattices corre- 
sponding to the fractal development of the atomic surface of type 
2. The peaks have Lorentzian shape, the width at half-maximum 
is 0.3°20, A = 1.5418 A and a= 10 A. The peaks are truncated at 
the 20% level of I(0, 0). 

sur faces  ( a n d  hence  quas i la t t i ces )  wi th  the  same 
s q u a r e d  F o u r i e r  t r ans fo rm.  St ructures  tha t  have  the  
same d i f f rac t ion  pa t t e rn  bu t  tha t  are ne i the r  c o n g r u e n t  
no r  e n a n t i o m o r p h i c  are ca l led  h o m o m e t r i c  (Pat ter-  
son,  1939). In  the case o f  quas i la t t ices ,  h o m o m e t r i c  
s t ruc tures  be long  to d i f ferent  LI classes.  The  cases 
where  the  t w o - d i m e n s i o n a l  s t ruc ture  is h o m o m e t r i c  
are e x c l u d e d  here.  

The  Four i e r  t r a n s f o r m  of  an  a tomic  surface corre-  
s p o n d i n g  to a cer ta in  stage o f  fractal  deve lopmen t  and  
cons is t ing  of  n ha l f -open  intervals  is 

n bj 
S * ( h i )  = ~ f e x p  (2~rih~- x±) dx~ ,  (6.1) 

j=l aj 

where  a j  a n d  bj deno t e  the  lower  and  u p p e r  b o u n d s  
o f  the j t h  h a l f - o p e n  interval .  In t eg ra t ion  y ie lds  

where  

a n d  

S*(h±)  = ( B - iA)/27rh±, (6.2) 

A =  ~ cos 2"rrh±bj- ~ cos 27rh±aj 
j = l  j = l  

(6.3) 

B = ~ sin 27rh±bj-  ~ sin 2~rh±aj. (6.4) 
j = l  j = l  

The  s q u a r e d  Four i e r  t r a n s f o r m  is 

IS*(hi)12 = (m2+ n2)(27rh.) -2. (6.5) 

Suppose  there  is a one -d imens iona l  a r r ay  o f  n po in t s  
at pos i t ions  bj ( j =  1 to n) wi th  weights  Wb = + 1 and  n 
poin ts  at  pos i t ions  aj ( j  = 1 to n) wi th  weights  wa = - 1 
in pe rpend icu la r  space. The  Four i e r  t r a n s f o r m  o f  this  
a r ray  is 

F(h±)=Wb ~ e x p ( 2 r r i h ± ' b j )  
j = l  

+ w,, ~ exp(27r ih±-  aj) 
j = l  
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= £ cos2 h b - £ cos2 h a  
j = i  j = l  

+ i Z s i n 2 ~ h ± b y -  s in2~h± . (6.6) 
j I j = l  

If  the endpoints of  the vectors aj and bj correspond 
to the lower and upper  bounds of  the n half-open 
intervals of  the atomic surface then, from (6.3) and 
(6.4), the Fourier transform of the one-dimensional 
array can be written as 

F(h±)  = A + iB (6.7) 

and the squared Fourier transform is given by 

I F ( h ± ) I 2 = A 2 + B  2. (6.8) 

Except for the factor (27rh±) -2, the squared Fourier 
transforms (6.5) and (6.8) are identical: 
IF(h~)l~(2~h~) < =  IS*(h )l =. Thus, the initiator of an 
atomic surface may be defined in terms of  a density 
distribution, Pt, that consists of  two points with 
weights w ~ = -  1 and Wb= +1 separated by the dis- 
tance Wo (Fig. 7a). The density distributions of  the 
generators, p+,f (ny odd) and p-~y (n f  even), consist of 
three points separated by the intervals with length 
d~(nf) and d2(nf) with weights Wb, Wa and wb (Fig. 
7b). p - ( x )  is a function that is symmetrical with the 
function p+(x) about the point x =0 ,  i.e. p - ( x ) =  
p + ( - x ) .  The atomic surface of  the first fractal stage 
(Fig. 7c), pl ,  may be considered as the convolution 

W o 

(a) • ~1* ~1- 
o • • o 

(b) I I I  
o • o 

I • + 1  

0 - 1  

I 

(¢) [1 l - - l r - I i  
E,,o ~ o1 

oe o • o  • o 

[. o~ .,o] 
o eo  • o 

I 7q 
• ° "  9 " 9 ;  

IF] n r-] [ o . o ]  

. . . . .  e:9;-?; 
I r l  

. . . . .  9 ; 9 ; ' 9 ;  

Fig. 7. Density distributions p and convolution products .. Solid 
circles represent points with weight wb = + 1, open circles points 
with weight wa = - 1. (a) Density distribution of the initiator, pz, 
where Wo=acosa+asina. (b) Density distribution of the 
generators of type 2, p~ and p~. d~(nl)=2a(cos a)/r3"~ and 
d2(nr)=a(cos a)/z 3"~÷1. (c) Convolution product px*p~, which 
corresponds to the atomic surface of the first fractal stage. (d) 
Two homometric convolution products (atomic surfaces), 
p, ,p;  ,p~ and p,,p~ ,p~. Since d~(nf)=d~(nf+ 1)+d2(nF+ 1), 
two pairs of points with opposite weight come to lie at the same 
position. Therefore, the resulting density distribution consists of 
only 14 points instead of 18. The corresponding atomic surface 
consists of only seven instead of nine segments. 

of  pl with p~-, Pl = P l  * P~. Pl * PT is enantiomorphic 
+ 

to p~ * P l -  

A n  atomic surface after n I steps of development 
can be expressed as 

p,,y= pl * p-~ * p~ * p~ * . . .  * P+z for n f o d d  

and 

p,,y = pl * p~- * p2- * p~ * . . .  * P~I for ny even. 

It follows directly from the commutative law of  con- 
volution operations (Hosemann & Bagchi, 1954) that 

p = p t * P * p ; , . . . , P  
is a function with 2 ' '-1 homometric  and 2 ' '-1 enan- 
t iomorphic forms, where n' denotes the number  of  
asymmetric density distribution functions. Fig. 7(d)  
shows two homometric  atomic surfaces, pl * p~- * pE- 
and pl *p~*p-~ .  They are enantiomorphic to 
pl * p-( * p-~ and pl * p~- * p2-, respectively. For n I = oo 
(fractally shaped atomic surface), there exist infinitely 
many enantiomorphic and homometric atomic sur- 
faces (quasilattices). 

o 

1 

' 4 

' 6 

7 

0 1 2 [w, /w0]  

Fig. 8. Patterson syntheses of the nine different types of atomic 
surface along X ±. 



676 ONE-DIMENSIONAL QUASILATTICES 

7. Structure determination 

In the case of  the original Fibonacci quasilattice, the 
width of the atomic surface can be obtained from the 
Patterson function Pq(O, x±) along the perpendicular 
space X . .  The Patterson function falls to a minimum 
as ]x±] increases from 0 to w0. By means of the Fourier 
transform of  this simple atomic surface, 

S*(h±) = sin(rrh. Wo)/rrh±, 

and according to (3.4), the IF(hll) [ can be converted 
to ]F(h)]. Direct methods are then used to solve the 
phase problem in two-dimensional space. 

Fig. 8 shows the Patterson functions Pq(O, x±) for 
the nine different types of  quasilattice. Patterson 
functions with equal widths differ in their shape. To 
calculate S*(h±), one has to deconvolute the Patter- 
son function to find the shape of the atomic surface. 
However, even if one allows rough approximations, 
it would be a tedious task to determine the shape of 
the atomic surfaces by means of the calculated Patter- 
son functions, despite the fact that there exists an 
unlimited variety of  homometric atomic surfaces. 
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